第582章 克拉梅尔猜想,不就顺带手的事?(2/2)
到难以置信。
但从数学家的角度上说,他是多么的希望,江南能再一次创造奇迹。
那江南能创造奇迹么?
答案自然是……
能!
且必须能啊!
不就是一个小小的克拉梅尔猜想而已,将其解出来,那不是分分钟的事?
也许有很多大大对这个猜想很不熟悉,毕竟之前提到的次数不多。
甚至有些大大会说这样写非常突兀生硬,感觉是为了装逼而装逼。
毕竟之前江南都没研究过这个猜想,怎么突然就要在大会上当众证明了?
实际上……
这可真不是为了装逼而装逼。
且真没有太突兀生硬。
而是先前早有伏笔。
同样在383章就说过,孪生素数猜想与梅森素数猜想,ABC猜想,哥德巴赫猜想,黎曼猜想并称素数方面五大猜想。
其中周氏猜测,就是针对于梅森素数分布的一种猜测,可以等同。
而克拉梅尔猜想是什么?
这个想必大家应该都听说过吧???
就是钟表王国数学家哈拉尔德·克拉梅尔在1937年提出。
“这猜想是说:liup(n至∞){p(n+1)-pn}/(lnpn)^2=1。
这里pn代表第n个素数。”
大家没看错。
该猜想就是如此的简单。
无非就是这么一个小小公式罢了。
如果还不理解,那就捕捉一个重点,这个猜想,是针对于素数而言。
而素数……
那不正是江南的拿手好戏么?
对于别人来说。
克拉梅尔猜想或许很难,想要证明出来,用难如登天来形容也不为过。
因为早在克拉梅尔提出之初,就曾想利用黎曼假设来证明该猜想。
但那时候黎曼假设还未被证明。
所以用来证明克拉梅尔猜想只能是笑谈,毫无根据,最终不了了之。
但现在呢?
黎曼假设已经被江南证明了啊!
再加上哥德巴赫,孪素,周猜和ABC等全都是素数方面的猜想。
啧啧!
把几个大猜想都搞定了,那搞定克拉梅尔猜想还不是顺带手的事?
但从数学家的角度上说,他是多么的希望,江南能再一次创造奇迹。
那江南能创造奇迹么?
答案自然是……
能!
且必须能啊!
不就是一个小小的克拉梅尔猜想而已,将其解出来,那不是分分钟的事?
也许有很多大大对这个猜想很不熟悉,毕竟之前提到的次数不多。
甚至有些大大会说这样写非常突兀生硬,感觉是为了装逼而装逼。
毕竟之前江南都没研究过这个猜想,怎么突然就要在大会上当众证明了?
实际上……
这可真不是为了装逼而装逼。
且真没有太突兀生硬。
而是先前早有伏笔。
同样在383章就说过,孪生素数猜想与梅森素数猜想,ABC猜想,哥德巴赫猜想,黎曼猜想并称素数方面五大猜想。
其中周氏猜测,就是针对于梅森素数分布的一种猜测,可以等同。
而克拉梅尔猜想是什么?
这个想必大家应该都听说过吧???
就是钟表王国数学家哈拉尔德·克拉梅尔在1937年提出。
“这猜想是说:liup(n至∞){p(n+1)-pn}/(lnpn)^2=1。
这里pn代表第n个素数。”
大家没看错。
该猜想就是如此的简单。
无非就是这么一个小小公式罢了。
如果还不理解,那就捕捉一个重点,这个猜想,是针对于素数而言。
而素数……
那不正是江南的拿手好戏么?
对于别人来说。
克拉梅尔猜想或许很难,想要证明出来,用难如登天来形容也不为过。
因为早在克拉梅尔提出之初,就曾想利用黎曼假设来证明该猜想。
但那时候黎曼假设还未被证明。
所以用来证明克拉梅尔猜想只能是笑谈,毫无根据,最终不了了之。
但现在呢?
黎曼假设已经被江南证明了啊!
再加上哥德巴赫,孪素,周猜和ABC等全都是素数方面的猜想。
啧啧!
把几个大猜想都搞定了,那搞定克拉梅尔猜想还不是顺带手的事?