第116章 洛书证道了(2/2)

投票推荐 加入书签

规矩数’,墨度宗师论曰:以数解形,如利刃用于绳结,必兴也!吾因而苦思,又观围弈棋盘之经纬纵横,终得一法,可将形数之理合而为一。”  

听到洛书子的开场白,秦钧心里突然咯噔了一下:“卧槽,不会吧?”  

然后他就看到洛书拿着粉笔,在问道台的黑陶板上画了两条线。  

一纵,一横,两线相交成十字,交点之处备注一数:0!  

心中的猜测得到了证实,秦钧震惊得差点叫出来:  

洛书,竟然发明了坐标系!  

这时台上的小姑娘,指着黑板上的十字说:“此为‘坐标’,可将一切之形化而为数。”  

台下众人听到这句话,顿时响起了窃窃私语之声。  

洛书的“口气”实在太大了,竟然宣称能将一切之形化而为数,那岂不是以后都没有形学问题,只有数学问题?  

商俟和墨度两位宗师脸色凝重,静静地等着洛书子进一步讲解。  

他们直觉地感到,那个坐标系…不简单!  

“坐标上一点,以一数对可唯一确定。”洛书继续讲道。  

然后作为实际例子,她在坐标上画了几个点并写上坐标:、、。  

对这个方法,洛书坦然直言道:“此非吾之新创,其源自围弈棋谱也!”  

用“数对”表示坐标上的点,来自围棋棋谱,这历史可就悠久了。  

最远可以追溯到一千五百多年前,发明围棋的天帝!  

不过仅仅如此,当然不能表达“一切之形”。  

洛书极为重要的一步,是引入方程来表示坐标上的线。  

比如一条直线,洛书用方程:ykxb来表示。  

所有这条直线上的点的坐标,都是这个方程的解,所有以这个方程的解为坐标的点,都在这条直线上。  

另外一个单位圆,可以用方程:x2y21来表示…  

秦钧听到这里就知道,直角坐标系的建立已无悬念。  

未来这个坐标系,将被叫做“洛书坐标”!  

看着问道台上的纤瘦少女,秦钧忍不住发出一声叹息:“洛书子,证道矣!”

章节目录